Reset MapThe Rockefeller University Flexner Hall Rm. F135 New York, NY 10065The human brain comprises several hundred billion nerve cells or neurons, which are connected in an intricate and precise pattern to form the neural circuits that underlie all brain functions, including perception, memory and the control of movement. These circuits form during embryonic development when each neuron sends out a slender extension, the axon, to connect to an appropriate set of target cells. The Tessier-Lavigne lab is interested in how these neuronal axons locate their targets and how inappropriate axon projections are refined or eliminated by selective axon pruning (or degeneration) during development. They also study how these pruning mechanisms may also mediate the degeneration of axons in neurodegenerative diseases including Alzheimer's and Parkinson's diseases or following trauma, such as in stroke or spinal cord injury. In the embryonic brain, developing axons are tipped by a specialized sensory structure called the growth cone, which senses chemical guidance cues that instruct it to migrate in particular directions. The lab has discovered a number of the chemical cues operating in the mammalian nervous system, including small protein families known as netrins and slits, as well as receptors on the growth cones that detect many of these cues. To understand how guidance cues collaborate to ensure that the axons are guided unerringly, our lab is seeking to identify the full complement of cues guiding particular sets of axons, as well as the intracellular pathways they trigger to signal directed motion. As an axon progresses along its trajectory, its growth cone exhibits a remarkable plasticity, changing its response to guidance cues — losing responsiveness to those that directed it over the previous leg of its trajectory and acquiring responsiveness to those that will guide it over the next leg. A major focus in the lab is on understanding the mechanisms that control this plasticity and switching of growth cone responses, and their relation to other plastic changes, such as those occurring after injury and in learning and memory. In the embryo, too many axonal connections are initially formed, and many axons have to be selectively eliminated through a process of pruning or developmental degeneration. The lab has shown that several of the cues that initially guide axons are later responsible for triggering axon degeneration in the embryo. The lab has also shown that some of the mechanisms that refine neuronal circuits during development are reutilized in pruning that occurs as part of adult plasticity, and share important mechanistic similarities with the neurodegeneration that occurs in diseases like Alzheimer's. To test the relevance of these mechanisms to human diseases, the lab has also begun using stem cell technology to reprogram nonneuronal cells obtained from patients with neurodegenerative diseases into neurons. This approach offers the opportunity to characterize the behavior of diseased human neurons and to examine the mechanisms that cause these diseased neurons and their processes to degenerate. Collectively, these studies have the potential to provide novel therapeutic entry points for treating these diseases.
The Contract Research Map is owned and maintained by Scientist.com. It was created to help researchers in the life sciences identify and connect with contract research organizations (CROs) based on geography. Updated nightly, this map features all of the available CROs within our network, so you can order services with a few clicks. Click on a specific country, scroll on the map itself or type into the search bar at the top—there are many ways to find the location and suppliers that you’re looking for. From Argentina to New Zealand, use this map to connect with a CRO near you.
We believe that every researcher across the world should be able to connect with the thousands of global CROs that exist and have the opportunity to work together. Like many industries,the life science supply chain has been disrupted over the last year. But there are many other circumstances such as international customs regulations or sensitive shipping times that create limitations around which countries are feasible to partner with. Sometimes, finding a CRO based in a country that best suits your research needs is imperative. We hope this contract research map allows you to find the right partner in the right place at the right time.
Have questions or feedback? We’d love to help. You can find our FAQs and contact information on the Learn more page.
Interested in connecting with one or more of the contract research organizations listed on this map? By clicking on the company’s name, you will be directed to their supplier profile on the Scientist.com marketplace. Once you set up a marketplace account you can start the ordering process immediately.
Scientist.com is the world's largest enterprise marketplace for outsourced R&D services. It saves time and money and provides access to innovation while maintaining compliance with an organization’s procurement policies.
Scientist.com has built private, enterprise marketplaces from 24 of the 30 largest pharmaceutical companies, 80+ biotech companies, the US National Institutes of Health (NIH) and numerous other pharma and biotech companies. If you are employed by one of these organizations, you can log in to get started today. If you are unsure about how to get started, you can email our team at support@scientist.com or go to our website www.scientist.comto speak to someone via our live chat.
Scientist.com is a highly efficient enterprise-wide outsourcing marketplace that makes it possible for research organizations to save time and money, access innovation and ensure compliance. It utilizes a universal legal agreement and AI technologies to enable research like never before. See how comparing proposals and getting 1-on-1 support from our Research Concierge® team will enable you to place more research today.
If your CRO isn’t showing up on the map, then please be sure your company profile is up to date in Scientist.com’s Backoffice. After logging in, click the Your Company button in the navigation at the top, and then select the Locations tab.
Head over to backoffice.scientist.com to update your supplier profile and information. It may take up to two business days for the updates to be reflected on the map.